Színes oldatok. Néhány kémcső alján láthattok szilárd anyagot is, ezek ún. telített oldatok.

Oldhatósággal kapcsolatos számolások

Itt beágyazott új videónkban, az emelt kémia érettségi számolási feladatinak sűrűn előforduló építőkövével, az oldhatósággal, illetve annak hőmérsékletfüggésével foglalkozunk. Lesz szó telített, telítetlen és túltelített oldatokról is. Szokás szerint néhány válogatott érettségi példán keresztül mutatom be, hogy hogyan célszerű ezeket a feladatokat megközelíteni.

Ebben blogposztban pedig a videót kiegészítve röviden összefoglaljuk, hogy mit kell tudnotok az oldhatóságról. Oldatokkal kapcsolatos számolás egészen biztosan lesz a kémia érettségin, így ennek a témakörnek az alapos ismerete mindenképp szükséges ahhoz, hogy magas pontszámot érhessetek el a vizsgán.

Színes oldatok. Néhány kémcső alján láthattok szilárd anyagot is, ezek ún. telített oldatok.

Az oldhatóság

Adott oldószer általában nem képes korlátlanul oldani más anyagokat, egy bizonyos mennyiségű feloldandó anyag hozzáadása után az oldódás egyensúlyra vezet. Amennyiben az oldat már nem képes többet feloldani a feloldandó anyagból, akkor telített oldatnak nevezzük. Fogalmazhatunk másképp is: telített oldat, amelynek összetétele megegyezik a szilárd anyaggal egyensúlyban lévő oldat összetételével.

Oldhatóság példái
Az oldat definíció szerint homogén rendszer. A képen látható rendszerek közül a zöld, a kék és a fehér is opálos, így a teljes rendszer (folyadék és szilárd fázis) nem oldat, hiszen heterogén. Ezekben az oldott és a feloldatlanul maradt anyag egyensúlyban van egymással, vagyis a folyadék fázis telített oldat.

Fontos szó az egyensúly: a telített oldatban a feloldatlanul maradt anyag folyamatosan oldódik fel, ezzel egyetemben azonban a feloldott anyag folyamatosan válik ki az oldatból. A két folyamat sebessége megegyezik, így makroszkopikusan nincs változás. Ha például agyoncukrozzuk a teánkat, annyira, hogy egy bizonyos mennyiségű cukor feloldatlanul marad, majd a bögrét éjszakára félretesszük, biztosak lehetünk benne, hogy reggelre már nem ugyanazok a cukormolekulák lesznek a szilárd fázisban, mint este voltak. De a mennyiségek nem változtak, így olyan, mintha semmi sem történt volna.

Fontos az is, hogy az telített oldat összetétele függ a hőmérséklettől, de erről bővebben később. Emiatt az oldhatósági adathoz mindig meg kell adni azt is, hogy milyen hőmérsékletre vonatkozik.

Egy adott anyag oldhatóságát úgy jellemezhetjük, hogy telített oldatának összetételét adjuk meg. Ez legtöbbször a

  • tömegszázalékos összetétel, vagy hogy
  • hány gramm anyagot tud feloldani 100 gramm oldószer.

De lehetne más összetételre jellemző adat is, például koncentráció.

Az oldhatóság hőmérsékletfüggése

Minden anyag oldhatósága függ a hőmérséklettől. Miért? Mert az oldódáshoz tartozó folyamathő (az oldáshő) nem 0, hanem vagy egy pozitív vagy egy negatív érték. Előbbi esetben a folyamat endoterm, utóbbi esetben exoterm.

Az alábbi egyensúlyi folyamatot megzavarhatjuk a hőmérséklet változtatásával:

folyadékoknál: X(sz) = X(aq)

gázoknál: Y(g) = Y(aq)

A Le-Chatelier-elv értelmében, ha a hőmérsékletet növeljük, az egyensúly az endoterm irányba tolódik. Amennyiben a fenti reakciók jobbra endotermek (vagyis az oldáshő endoterm), akkor jobbra fog tolódni az egyensúly, vagyis az adott anyag oldhatósága nő. Amennyiben az oldáshő negatív (az oldódás folyamata exoterm) a reakció balra tolódik a hőmérséklet növelésével, vagyis melegben rosszabbul oldódik az adott anyag.

Minden anyag oldhatósága függ a hőmérséklettől.

A szilárd anyagok esetében elképzelhetünk endoterm (pl. glükóz) és exoterm (pl. NaOH) oldódást is, a gázok esetében az oldódás azonban mindig exoterm. Vagyis a gázok mindig rosszabbul oldódnak magasabb hőmérsékleten. Szegény halak nyáron…

Na jó, menjünk bele ebbe még egy picit mélyebben:

ΔoH = Erács + Ehidr.

Vagyis az oldáshő két komponensre bontható, a rácsenergiára (felbontjuk a szilárd anyagban lévő kötőerőket) és a hidratációs energiára (az oldódó anyag és a víz molekulái között létrejönnek kötőerők). A rácsenergia mindig pozitív (endoterm folyamat) a hidratációs mindig negatív (exoterm folyamat). Így, ha egy adott anyagnál a rácsenergia dominál (nagyobb, mint a hidratációs energia abszolútértéke), akkor endoterm, ha a hidratációs energia, akkor exoterm lesz az oldódása. Gázok esetében nincs rácsenergia, ezért mindig exoterm az oldódásuk.

Az oldhatóság hőmérsékletfüggését általában anyagok tisztítása során használjuk ki, amely folyamatot átkristályosításnak nevezünk. A számolási feladatok egy része is erre fog rákérdezni.

A túltelített oldat fogalma is sokszor előkerül a kémia érettségin. Az ilyen rendszerekben több oldott anyag található, mint amennyi a telített oldatban. Ezek az oldatok metastabil rendszerek, kis zavaró hatásra (pl. rázás, porszem hozzáadása) azonnal kicsapódik belőlük a “feleslegben lévő” oldott anyag. Ilyen oldatot úgy lehet készíteni, hogy egy magas hőmérsékleten jól oldódó sónak elkészítjük a telített oldatát (magas hőmérsékleten), majd nagyon lassan, minden zavaró hatástól mentesen hagyjuk hűlni. Ha az adott só alacsonyabb hőmérsékleten rosszabbul oldódik, akkor – amennyiben nem válnak ki a kristályok, túltelített oldathoz jutunk. Más módon túltelített oldat nem készíthető.

A megoldási stratégia: keverési egyenlet

Van, amikor ennél egyszerűbb megoldási mód is létezik, robusztussága és egyszerűsége miatt én mégis azt javaslom, hogy az oldhatósággal kapcsolatos számítások során a keverési egyenletet használjátok.

A keverési egyenletet alapvetően arra a problémára alkalmazták, hogy kiszámítsák két azonos komponensekből álló, de eltérő összetételű oldat bizonyos arányú keverése után (pl. 100 gramm 10 w%-os és 55 gramm 20 w%-os ecetsavoldat) milyen lesz a keletkező oldat összetétele. A keverési egyenlet így néz ki:

m1 ∙ w%1 + m2 ∙ w%2 = (m1 + m2) ∙ w%3

Ez az egyenlet kisebb átalakításokkal nem csak ilyen oldatok keverésénél, hanem töményítésnél és hígításnál, sőt átkristályosításnál és a kristályvíztartalmú sókkal kapcsolatos számításoknál is jól használható. Ezekben az esetekben az oldószerre és az oldott anyagra is “oldatként” tekintünk, melyek 0 vagy 100 %-ban tartalmazzák az oldott anyagot:

  • hígításnál: az oldószer w%-a 0, hiszen nem tartalmaz oldott anyagot
  • töményítésnél: amennyiben oldószert párologtatunk el, annak w%-a 0, hiszen nem tartalmaz oldott anyagot. Mivel eltávolítjuk a rendszerből, ezért negatív előjellel kell szerepeljen az egyenlet bal oldalán (vagy pozitívval a jobb oldalon).
  • töményítésnél: az oldott anyag hozzáadásakor fontos, hogy annak w%-a 100, mert csak oldott anyagot tartalmaz
  • kristályvíztartalmú sók esetében ki kell számolni a só w%-át a kristályvizes sóban a következő módon (M/Mkvizes só ∙ 100) és ezt a számot kell az egyenletbe írnunk.

Hogy lássatok pár éles emelt kémia érettségi példát, ahol ezeket alkalmazzuk, nézzétek meg a videót: https://youtu.be/xJpWKElwSb4 (de fent is beágyaztuk).

Ha az alapoktól szeretnétek megtanulni a számolásokat, illetve hozzáférést szeretnétek nyerni az elméleti videóinkhoz, a tudásotokat tesztekkel ellenőrizni és élő konzultációs alkalmakon részt venni, akkor jelentkezzetek kurzusainkra: https://kurzus.lvlmeup.hu/

Oszd meg!

Megosztás itt: facebook
Megosztás itt: twitter
Megosztás itt: pinterest
Megosztás itt: linkedin

Related Posts

Színes oldatok. Néhány kémcső alján láthattok szilárd anyagot is, ezek ún. telített oldatok.

Oldhatósággal kapcsolatos számolások

Itt beágyazott új videónkban, az emelt kémia érettségi számolási feladatinak sűrűn előforduló építőkövével, az oldhatósággal, illetve annak hőmérsékletfüggésével foglalkozunk. Lesz szó telített, telítetlen és túltelített